G and/or C-bands in plant chromosomes?

نویسندگان

  • I Schubert
  • R Rieger
  • P Döbel
چکیده

Similarities and differences become evident from comparisons of centromeric and non-centromeric banding patterns in plant and animal chromosomes. Similar to C and G-banding in animals (at least most of the reptiles, birds and mammals), centromeric and nucleolus-organizing region bands as well as interstitially and/or terminally located non-centromeric bands may occur in plants, depending on the kind and strength of pretreatment procedures. The last group of bands may sometimes be subdivided into broad regularly occurring 'marker' bands and thinner bands of more variable appearance. Non-centromeric bands in plants often correspond to blocks of constitutive heterochromatin that are rich in simple sequence DNA and sometimes show polymorphism; they thus resemble C-bands. However, most of these bands contain late-replicating DNA. Also they are sometimes rich A X T base-pairs, closely adjacent to each other and positionally identical to Feulgen+ and Q+ bands, thus being comparable to mammalian G-bands. Although banding that is reverse to the non-centromeric bands after Giemsa staining is still uncertain in plants, reverse banding patterns can be obtained with Feulgen or with pairs of A X T versus G X C-specific fluorochromes. It is therefore concluded that not all of the plant Giemsa banding patterns correspond to C-banding of mammalian chromosomes. Before the degree of homology between different Giemsa banding patterns in plants and G and/or C-bands in mammals is finally elucidated, the use of the neutral term 'Giemsa band', specified by position (e.g. centromeric, proximal, interstitial, terminal), is suggested to avoid confusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Failure of PCR-RAPD technique to differentiate sex in Mahisefied (Rutilus frisii kutum) from the South Caspian Sea

In order to identify the sex marker in Mahisefied, Rutilus frisii kutum, samples from 5 male and 5 female fish were collected from the south Caspian Sea. Polymerase chain reaction random amplified polymorphic DNA (PCR-RAPD) was performed using 124 primer sets. All bands were numbered using 1 and 0 scores corresponding to the presence or absence of bands, respectively and data were analyzed usin...

متن کامل

Feulgen banding of heterochromatin in plant chromosomes.

Feulgen bands can be obtained at the sites of constitutive heterochromatin in the chromosomes of Anemone blanda, Fritillaria lanceolata and Scilla siberica, simply by means of a short or extended acid hydrolysis. Extended hydrolysis gives positive bands in A. blanda and F. lanceolata and negative bands in S. siberica. Short hydrolysis gives no bands in A. blanda and S. siberica but gives negati...

متن کامل

Involvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis

DNA methylation as epigenetic mark plays a key role in normal differential and developmental processes as well as in dynamic gene regulation at the genomic level. To assess DNA methylation pattern in different developmental stages of Aeluropus littoralis, methylation sensitive amplified polymorphism (MSAP) was used. Methylation and demethylation status at the CCGG recognition site were...

متن کامل

Evident diversity of codon usage patterns of human genes with respect to chromosome banding patterns and chromosome numbers; relation between nucleotide sequence data and cytogenetic data.

The sequences of the human genome compiled in DNA databases are now about 10 megabase pairs (Mb), and thus the size of the sequences is several times the average size of chromosome bands at high resolution. By surveying this large quantity of data, it may be possible to clarify the global characteristics of the human genome, that is, correlation of gene sequence data (kb-level) to cytogenetic d...

متن کامل

Transposons and their application in plant pathology

Prokaryote, viruses, and eukaryotes chromosomes contain fragments of DNA can move and migrate to other parts of the chromosome calling as Transposition and play an important role in new combinations of gene production. DNA fragments carrier the genes or transposons are the transposable elements that may called gene mutant also. Transposons can move to another position of the same chromosome or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 71  شماره 

صفحات  -

تاریخ انتشار 1984